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Abstract: This paper presents explicit analytical solutions of the pressure coefficient and the pressure ratio across the 

oblique shock and expansion waves in function of the flow deflection angle. These new explicit pressure-deflection 

solutions can be efficiently used in solving applied aerodynamic problems in supersonic flows, such as the aerodynamics 

of airfoils and wings in supersonic-hypersonic flows and the shock and expansion waves interactions, and can be also 

used to increase the computational efficiency of the numerical methods based on the Riemann problem solution requiring 

the pressure-deflection solution of the oblique shock and expansion waves, such as the Godunov method. 
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1. INTRODUCTION 

 The solution of many applied aerodynamic problems in 

supersonic flows often requires explicit solutions of the 

pressure ratio, or the pressure coefficient, in function of the 

flow deflection angle for the oblique shock and expansion 

waves. Also, several numerical methods based on the 

solution of the Riemann problem, such as the Godunov 

method, require the pressure-deflection solution of the 

oblique shock and expansion waves, which are usually 

obtained by an iterative procedure (see for example 

Mateescu [1] and Loh & Hui [2] ). In the absence of explicit 

analytical solutions, the solutions of the oblique shock and 

expansion waves are obtained from diagrams and tables (see 

for example Anderson [3-5], Saad [6], Yahya [7] and 

Carafoli, Mateescu and Nastase [8]), or numerically by 

solving iteratively the implicit equations. 

 However, exact analytical solutions in explicit pressure-

deflection form, or eventually explicit third-order accurate 

solutions, would be more efficient for solving applied 

aerodynamic problems in supersonic-hypersonic flows, such 

as the shock and expansion waves interactions and the 

aerodynamics of airfoils and wings in supersonic-hypersonic 

flows, or to be efficiently used in the numerical methods 

which require the pressure-deflection solutions of the 

oblique shock and expansion waves (such as the Godunov 

method). 

 The aim of this paper is to obtain rigorous analytical 

solutions of the pressure coefficient and pressure ratio across the 

oblique shock waves in explicit form in function of the flow 

deflection angle. As a by-product, unitary third-order accurate 

solutions in explicit pressure-deflection form are also derived 

for both the oblique shocks and expansion waves. 
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2. EXPLICIT EXACT ANALYTICAL SOLUTIONS 
FOR OBLIQUE SHOCK WAVES 

 The conservation equations of continuity, momentum 

(normal and tangent to the shock) and energy for a thin 

shock wave are 

1V1n = 2V2n           (1a) 
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where V1 , p1 , 1 , and V2 , p2 , 2 , are the fluid velocity, 

pressure and density before and after the shock, and 
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 are the velocity components normal and 

tangent to the shock defined as 

V1n = V1 sin , V1t = V1 cos , V1n
2
+V1t

2
= V1

2
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V2n = V2 sin( ) , V2t = V2 cos( ),  V2n
2
+V2t

2
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2
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where  and  are the shock inclination angle and the flow 

deflection angle behind the shock with respect to the 

upstream flow direction (Fig. 1). 

 The Mach numbers before and after the shock are defined 

using the speeds of sound a1 = p1 1  and a2 = p2 2  

as 

M1 = V1 a1 , M 2 = V2 a2 , M1n = V1n a1 = M1 sin         (3) 

 The system of equations (1) can be reduced to the 

quadratic equation of the density ratio = 1 2 =V2n V1n  in 

the form 
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1( ) 1+ 2 M1n
2( ) +1( ) = 0           (4) 

 

Fig. (1). Shock wave geometry. 
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 The unknown shock angle  is defined by the boundary 

condition behind the shock 
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2
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which can also be expressed as 

sin =
1( ) sin

1 1 2( ) sin2
cos          (6b) 

 These are not explicit equations of  in function of  

and the solution is usually obtained from diagrams and tables 

[3-7], or numerically by an iterative procedure. 

 By defining the pressure coefficient for the flow behind 

the shock as 

Cp =
p2
p1

1
2
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the boundary condition (6b) can be expressed in the form 

sin =
1
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 This can be recast as a cubic equation in terms of the 

pressure coefficient Cp  
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 Equations (10) and (11) represent the exact explicit 

solutions for the weak shock waves (which is the main aim 

of this paper) and, respectively, for the strong shock waves, 

occurring in special situations. These two solutions become 

equal for = , which represents the limit case of the 

attached oblique shocks, just before the shock wave 

detachment. 

 Equation (12) represents the solution for an expansion 

shock, which is associated with an unphysical decrease of 

entropy in adiabatic flow. This entropy decrease is however 

very small for a certain range of values of the deflection 

angle  and Mach number M1 , in which case equation (12) 

provide third-order accurate solutions of the Prandtl-Meyer 

expansions. This expansion-shock solution has however an 

unphysical upper limit of the deflection angle, which 

corresponds to the limit angle at the shock-wave detachment, 

restricting thus its validity to a narrower range of deflection 

angles for various upstream Mach numbers. 

 The exact changes of the pressure, density, speed of 

sound and Mach number across the shock and the shock 

angle  can be calculated from the exact explicit solution of 

the pressure coefficient (10) for weak shocks, or from 

equation (11) for strong shocks, as 
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 Thus, equations (10) and (11) represent, together with 

(14a-f), the exact analytical solutions in explicit pressure-

deflection form of the weak and strong shock waves. 

3. EXPLICIT THIRD-ORDER ACCURATE SOLUTIONS 
FOR OBLIQUE SHOCK AND EXPANSION WAVES 

 The boundary condition (8) can also be expressed as 

1+
+1

4
M1

2 Cp sin =
B

2
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where B is defined as 

B = M1
2 1           (16) 

and where the parameter , which has values close to unity, 

is defined as 
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 Equation (15) can be thus recast formally as a quadratic 

equation, 
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with two solutions for the positive and negative values of   
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where K  represents a similarity parameter for supersonic-

hypersonic flows 
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 For = 1  one obtains the second-order solution [8] 
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one obtains the present third-order solution 
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which leads to the pressure ratio across the shock. 
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with the other flow variables behind the shock defined by 

equations (14b-f). 

 Equations (23) and (24) represent the third-order unitary 

solutions in explicit pressure-deflection form for both the 

oblique shocks (for > 0 ) and Prandtl-Meyer expansions 

(for < 0 ), since the unphysical entropy decrease associated 

with the third-order solution (23) of an expansion shock is 

negligibly small for a certain range of Mach numbers and 

deflection angles. The other flow variables after the 

expansion are calculated more accurately from (24) by using 

the isentropic relations, instead of (14b-e), in order to 

eliminate the effect of the unphysical entropy variation, in 

the form 
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 The values of the supersonic-hypersonic similarity 

parameter K =
2sin

B

+1

8
M1

2  define the following flow 

regimes: 

(i) Linear supersonic flows, for K <<1  and M1 3 , 

when equation (23) reduces to the linear solution  

Cp = 2sin B  (or Cp 2 B  with  in radians), 

which is valid for both compressions ( > 0) and  

expansions ( < 0 ). 

(ii) Supersonic-moderate hypersonic flows, for K 1 . 

(iii) Hypersonic flows, for K >1 . 

 The pair of explicit solutions (10) and (12) represent also 

solutions for compressions and expansions, solving 

rigorously the oblique shocks ( > 0 ) and, respectively, with 

third-order accuracy the expansion waves ( < 0 ). 

4. NUMERICAL VALIDATIONS 

 The present explicit exact solutions of the pressure 

coefficient Cp  in function of the deflection angle  for the 

weak shock waves (10) and for the strong shocks (11) were  
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Fig. (2). Oblique shock waves: Variation of the pressure coefficient Cp  with the deflection angle  for various values of the upstream Mach 

number M1. Comparison between: 

Present unitary explicit third-order-accurate solutions Cp
M

, defined by eq. (23) for > 0 :  M1=1.2;  M1=1.5;  M1=2.0;  M1=3.0;  

 M1=5.0;  M1=12.  Present exact weak-shock solutions Cp  defined by eq. (10) in explicit form. ------- Present exact strong-shock 

solutions Cp
S

 defined by eq. (11) in explicit form. 

 

Fig. (3). Oblique shock waves: Variation of the pressure ratio p2 p1  with the deflection angle  for various values of the upstream Mach 

number M1 . Comparison between: Present unitary explicit third-order-accurate solutions, defined by eq. (24) for > 0 :  M1=2;  M1=3.0; 

 M1=5.0;  M1=8.0.  Present exact weak-shock solutions defined by equations (10), (14a) in explicit form. ------- Present exact strong-

shock solutions defined by equations (11), (14a) in explicit form. 
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Fig. (4). Oblique shock waves: Variation of the pressure coefficient Cp  with the upstream Mach number M1 for various values of the 

deflection angle . Comparison between: Present unitary explicit third-order-accurate solutions Cp
M

, defined by eq. (23) for > 0 :  

 = 5o ;  = 10o ;  = 15o ;  = 20o ;  = 25o ;  = 30o ;  = 35o .  Present exact weak-shock solutions Cp  

defined by eq. (10) in explicit form. ------- Present exact strong-shock solutions Cp
S

 defined by eq. (11) in explicit form. 

Table 1. Oblique shock wave: Relative errors of the present third-order-accurate solutions of the pressure coefficient Cp
M

, 

calculated with the unitary shock-expansion formula (23) for  > 0, with respect to the exact solutions, for various values 

of the flow deflection angle  and upstream Mach number M1 

 

 M1=1.2 M 1=1.5 M 1=2 M 1=3 M 1=5 M 1=8 M 1=12 M 1=15 

2° -0.67% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

4° - - - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

6° - - - -0.02% 0.00% -0.01% 0.00% 0.00% 0.00% 0.00% 

8° - - - -0.12% 0.00% -0.01% 0.00% 0.00% 0.00% 0.00% 

10° - - - -0.49% 0.01% -0.01% 0.00% 0.00% 0.00% 0.00% 

12° - - - - - - 0.01% 0.00% 0.00% 0.00% 0.00% 0.00% 

14° - - - - - - 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

16° - - - - - - -0.07% 0.01% 0.00% 0.00% 0.00% 0.00% 

18° - - - - - - -0.29% 0.02% 0.01% 0.00% 0.00% 0.00% 

20° - - - - - - -0.97% 0.03% 0.01% 0.00% 0.00% 0.00% 

22° - - - - - - -3.57% 0.04% 0.01% 0.00% 0.00% 0.00% 

24° - - - - - - - - - 0.03% 0.01% 0.00% -0.01% -0.01% 

26° - - - - - - - - - -0.01% 0.01% -0.01% -0.01% -0.01% 

28° - - - - - - - - - -0.12% 0.00% -0.02% -0.02% -0.02% 

30° - - - - - - - - - -0.45% -0.03% -0.03% -0.04% -0.04% 

32° - - - - - - - - - -1.41% -0.07% -0.06% -0.06% -0.06% 

34° - - - - - - - - - - - - -0.18% -0.11% -0.10% -0.10% 

36° - - - - - - - - - - - - -0.39% -0.20% -0.18% -0.17% 

38° - - - - - - - - - - - - -0.91% -0.39% -0.31% -0.29% 

40° - - - - - - - - - - - - -2.52% -0.77% -0.58% -0.54% 

- - - Detached shock: No oblique shock solution is physically possible. 
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found in perfect agreement with the classical indirect 

solutions (which calculate the deflection angle  for a 

specified inclination angle  of the oblique shock wave) 

and with the numerical solutions obtained by solving 

iteratively the implicit equations (6a or b) and (5a), which 

are given in diagram and table form in References [3-7]. 

 The present unitary third-order solutions for 

compression-expansion   (23),  and  the  expansion-shock 

solution (12), are validated in Figs. (2-4) and Table 1 by 

comparison with the exact solutions for the case of oblique 

shock waves ( > 0 ), and in Fig. (5) and Tables 2 and 3 for 

the case of expansion waves ( < 0 ) by comparison with 

Prandtl-Meyer solutions computed numerically by using 

Newton’s iterative procedure (based on the derivative of the 

Prandtl-Meyer function M( )  with respect to the Mach 

number). 

 The variations of the pressure coefficient, Cp , and of the 

pressure ratio across the shock, p2 p1 , with the deflection 

angle  are illustrated in Figs. (2, 3) for various values of 

the upstream Mach number M1 . Similarly, Fig. (4) 

illustrates the variations of the pressure coefficient Cp  with 

the upstream Mach number M1  for various values of the 

deflection angle . One can notice from these figures that 

the present unitary third-order solutions Cp
M

, defined by 

equation (23) for > 0 , are in excellent agreement with the 

exact solutions for a wide range of transonic, supersonic and 

hypersonic upstream Mach numbers, M1 , between 1.1 and 

15 (and even higher) and for a wide range of flow deflection 

angles , up to 40o  (or more) in function of M1 . 

 The relative differences between the present unitary 

third-order solutions Cp
M

 for > 0  and the exact weak-

shock solutions are shown in Table 1. One can notice that the 

present explicit third-order solution Cp
M

 has an excellent 

accuracy, with relative errors less than 1% for a wide range 

of Mach numbers and flow deflection angles, except very 

near to the detached shock conditions where the errors are 

somewhat larger. 

 For the expansion case, the present unitary third-order 

solutions Cp
M

 defined by equation (23) for < 0 , and the 

expansion-shock solutions Cp
E

, defined by equation (12), are 

compared with the Prandtl-Meyer solutions (computed 

numerically using Newton’s iterative method) in Fig. (5) and 

Tables 2 and 3. One can notice that the present unitary third-

order solution Cp
M

 for < 0 , and the present expansion-

shock solutions Cp
E

, are in very good agreement with the 

numerical solutions of the Prandtl-Meyer expansion for a 

wide range of upstream Mach numbers M1  and flow 

deflection angles . 

 

Fig. (5). Expansion waves: Variation of the pressure coefficient Cp  with the deflection angle  for various values of the upstream Mach 

number M1 . Comparison between: Present unitary explicit third-order-accurate solutions Cp
M

, defined by eq. (23) for < 0 :  M1=1.1;  

M1=1.2;  M1=1.5;  M1=2.0;  M1=3.0;  M1=5.0. Present expansion-shock solutions Cp
E

, defined by eq. (12), for:  M1=1.5;  M1=2.0; 

 M1=3.0.  Prandtl-Meyer expansion: numerical solutions (based on Newton’s iterative method). 
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 The relative differences between the present unitary 

third-order solutions, Cp
M

 for < 0 , or the expansion-shock 

solutions, Cp
E

, and the exact numerical solutions of Prandtl-

Meyer expansion are shown in Tables 2 and 3. One can 

notice that the present explicit third-order solutions Cp
M

 and 

Cp
E

 have a very good accuracy, with relative errors less than 

1% for a wide range of Mach numbers and deflection angles. 

 However, Cp
M

 has a better accuracy than Cp
E

 over a 

wider range of deflection angles for various upstream Mach 

numbers. In addition, Cp
M

 is defined by a simpler algebraic 

expression (23) and is a unitary compression-expansion 

solution valid for both the oblique shocks ( > 0 ) and 

Prandtl-Meyer expansions ( < 0 ). 

 For these reasons, Cp
M

 represents a better choice as a 

unitary third-order accurate solution. 

 

 

5. CONCLUSIONS 

 Explicit exact solutions of the pressure coefficient and 

the pressure ratio across the shock wave in function of the 

flow deflection angle  are derived in this paper for both the 

weak (10) and strong (11) oblique shock waves in 

supersonic-hypersonic flows. These explicit exact solutions 

were found in perfect agreement with the classical indirect 

solutions (calculating the flow deflection angle  for a 

specified inclination angle  of the oblique shock wave) 

and with the numerical solutions obtained by solving 

iteratively the implicit equations, which are given in diagram 

and table form in References [3-7]. 

 A unitary shock-expansion solution (23), denoted as Cp
M

, 

is also derived in explicit pressure-deflection form, solving 

with third-order accuracy (less than 1% errors) both the 

oblique shocks ( > 0 ) and the expansion waves ( < 0 ) for 

a wide range of upstream Mach numbers and flow deflection 

angles. 

Table 2. Expansion wave: Relative errors of the present third-order-accurate solutions of the pressure coefficient Cp
M

, calculated 

with the unitary compression-expansion formula (23) for  < 0, with respect to the numerical solutions of Prandtl-Meyer 

expansions, for various values of the flow deflection angle  and upstream Mach number M1 

 

 M1=1.2 M1=1.5 M1=2 M1=3 M1=5 M1=8 M1=12 

2° -0.12% 0.02% 0.01% -0.01% -0.03% -0.08% -0.14% 

4° -0.21% 0.07% 0.03% -0.01% -0.08% -0.12% 0.08% 

6° -0.15% 0.15% 0.07% 0.00% -0.06% 0.14% 1.11% 

8° 0.03% 0.25% 0.12% 0.04% 0.08% 0.78%  

10° 0.30% 0.37% 0.20% 0.12% 0.38%   

12° 0.62% 0.51% 0.29% 0.26% 0.83%   

16° 1.35% 0.81% 0.54% 0.71%    

20°  1.15% 0.89% 1.40%    

24°   1.33%     

 

Table 3. Expansion wave: Relative errors of the present third-order solutions of the pressure coefficient Cp
E

, calculated with the expansion-shock 

formula (12), with respect to the numerical solutions of Prandtl-Meyer expansions, for various values of the flow deflection angle  and 

upstream Mach number M1 

 

 M1=1.2 M1=1.5 M1=2 M1=3 M1=5 M1=8 M1=12 

2° -0.01 0.02% 0.01% 0.00% -0.03% -0.08% -0.14% 

4°  0.07% 0.04% 0.00% -0.07% -0.11% 0.08% 

6°  0.15% 0.10% 0.02% -0.04% 0.15% 1.12% 

8°  0.26% 0.18% 0.09% 0.11% 0.79%  

10°  0.41% 0.30% 0.20% 0.42%   

12°  0.59% 0.45% 0.38% 0.90%   

16°   0.89% 0.96%    

20°   1.49%     
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 An explicit expansion-shock solution (12) in pressure-

deflection form, denoted as Cp
E

, was also derived as a third-

order solution for the expansion waves, which also provides 

accurate results for a wide range of upstream Mach numbers. 

This solution has however an unphysical upper limit of the 

deflection angle, corresponding to the limit angle of the 

shock-wave detachment. Due to this limitation, the unitary 

shock-expansion solution Cp
M

 is the best choice as the 

unitary third-order-accurate solution for both the shock 

( > 0 ) and expansion ( < 0 ) waves for a wide range of 

supersonic and hypersonic Mach numbers and flow 

deflection angles. 

 These new explicit pressure-deflection solutions can be 

efficiently used in solving applied aerodynamic problems in 

supersonic flows, such as the aerodynamics of airfoils and 

wings in supersonic-hypersonic flows and the shock and 

expansion waves interactions, and can be also used to 

increase the computational efficiency of the numerical 

methods based on the Riemann problem solution, such as the 

Godunov method, which require the pressure-deflection 

solution of the oblique shock and expansion waves. 
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