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Abstract: This paper studied the problem of Bénard-Marangoni convection in a horizontal fluid layer heated from below 

with non-uniform temperature gradient under magnetic field. A linear stability analysis is performed to undertake a detail 

investigation. The eigenvalues are obtained for both adiabatic boundaries. The influence of various parameters on the 

onset of convection has been analyzed. Six non-uniform basic temperature profiles are considered and some general 

conclusions about their destabilizing effects are presented. 
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1. INTRODUCTION 

 Convection has been the subject of many investigations 

due to the related engineering applications such as crystal 

growth, weld penetration and in coating process. In recent 

years, there has been a great increase of interest in the theory 

and modeling of material processing in the microgravity 

environment. A theory and modeling of material processing 

in the laboratory may include the mechanism of suppressing 

free convection driven by both buoyancy and surface tension 

forces. Rayleigh’s paper is the pioneering work for almost all 

modern theories of convection. Rayleigh [1] showed that 

Bénard convection, which is caused by buoyancy effects, 

will occur when the Rayleigh number exceeds a critical 

value. The first theoretical study of convection caused by the 

thermocapillary effects was done by Pearson [2]. He 

analyzed Marangoni convection in the case of infinite fluid 

layer, a non-deformable free surface and zero gravity for no-

slip boundary conditions at the bottom. He showed that 

Marangoni convection occurs when the Marangoni number 

exceeds a critical value. The analysis of Bénard-Marangoni 

convection induced by thermal buoyancy and surface tension 

was treated by Nield [3]. He studied the Bénard-Marangoni 

convective instability in a planar horizontal fluid layer with 

non-deformable free surface. He showed that for steady 

convection, the two destabilizing mechanism reinforce one 

another. 

 The above investigations are limited to a uniform basic 

temperature gradient. Vidal and Acrivos [4], Debler and 

Wolf [5] and Nield [6] studied the effect of a non-uniform 

temperature gradient on the onset of Marangoni convection. 

Rudraiah [7] and Friedrich and Rudraiah [8] have examined  
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the combined effect of rotation and non-uniform basic 

temperature gradient on Marangoni convection. The effects 

of non-uniform temperature gradient on Bénard-Marangoni 

convection were studied by Lebon and Cloot [9] and the 

combined effects of non-uniform temperature gradient and 

Coriolis force (due to rotation) on the Bénard-Marangoni 

convection were analyzed by Rudraiah and Ramachandra-

murthy [10]. The results of [8-10] proved that the Coriolis 

force and suitable non-uniform temperature gradient 

suppress convection. Chiang [11] studied the effect of non-

uniform temperature gradient on the onset of stationary and 

oscillatory Bénard-Marangoni convection. He showed that 

the effect of crispation at a deformable upper free surface is 

destabilizing factor but the conductive state of non-steady 

conditions within the fluid layer does play a stabilizing state. 

Very recently, Idris et al. [12] studied the effect of non-

uniform basic temperature gradient on Bénard-Marangoni 

convection in micropolar fluid. They showed that the onset 

of convection can be delayed by the application of a cubic 

basic state temperature profile. 

 The effect of magnetic field on the onset of steady 

buoyancy-driven convection subject to a uniform basic 

temperature gradient was treated by Chandrasekhar [13] who 

showed that the effect of magnetic field is to increase the 

critical value of Rayleigh number and hence to have a 

stabilizing effect on the layer. The effect of magnetic field 

on the onset of steady Benard-Marangoni convection in a 

fluid layer with a nondeformable free surface was first 

analyzed by Nield [14]. He found that the critical Marangoni 

number monotonically increased as the strength of vertical 

magnetic field increased. The combined effects of non-

uniform temperature gradient and magnetic field on 

Marangoni convection have been studied by Rudraiah et al. 

[15]. Using the single-term Galerkin expansion procedure, 

they showed that a suitable non-uniform temperature 

gradient and magnetic field suppress Marangoni convection. 
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Rudraiah et al. [16] have further studied about the effect of 

magnetic field and non-uniform temperature gradient on 

Bénard-Marangoni convection. They analyzed the 

convection in the case of isothermal at the bottom boundary 

of the fluid layer. Later, Chan and Chen [17] extended the 

work of Rudraiah et al. [16] to include a deformable free 

surface. They found that crispation at a deformable upper 

free surface makes a more unstable system. 

 The instabilities of Bénard-Marangoni convection have 

been investigated in many previous works. However, little 

research has been conducted in the case of a constant heat 

flux at a lower boundary in which no perturbation in the heat 

flux is allowed. Motivated by these previous works, we aim 

to study the onset of Bénard-Marangoni convection in a 

horizontal fluid layer under externally imposed uniform 

magnetic field including the effect of non-uniform 

temperature gradient with a constant heat flux at a lower 

boundary, where no perturbation in the heat flux is allowed 

(insulating case). The linear stability theory is applied and 

the resulting eigenvalue problem is solved using the single-

term Galerkin expansion procedure. 

2. MATHEMATICAL FORMULATION 

 Consider a horizontal fluid layer of depth d with a free 

upper surface heated from below and subjected to a uniform 

vertical temperature gradient. The fluid layer is bound below 

by a rigid, electrically and thermally-perfect insulating wall 

and bounded above by a free surface. This free surface is 

subject to a constant heat flux. The interface has a surface 

tension, , which is assumed to be a linear function of the 

temperature as follows: 

= 0 T T0( ) ,           (1) 

where 0  is the value of  at temperature T0  and the 

constant  is positive for most fluids. We use Cartesian 

coordinates with two horizontal x- and y- axes located at the 

lower solid boundary and a positive z- axis is directed 

towards the free surface. The magnetic field, H acts in the z 

– direction. 

 In the basic state, the velocity U, the temperature T and 

the magnetic field H have the following solutions 

   
U = 0, H = Hk̂,

d

T

dT
0

dz
= f (z),           (2) 

where k̂  is the unit vector in the z – direction and f(z) is a 

nondimensional temperature gradient satisfying the 

condition 

 

f (z)dz = 1
0

1

.            (3) 

 Subject to the Boussinesq approximation, the governing 

equations for an incompressible, electrically conducting fluid 

in the presence of a magnetic field are expressed as follows: 

 Continuity equation: 

U=0,             (4) 

 Momentum equation: 

  
t
+ U U =

1
+ v 2

U +

0

g +
μ

4 0

H( )H,  (5) 

 Energy equation: 

 
t
+ U T =

2T ,            (6) 

 Magnetic field equations: 

H=0,              (7) 

  t
+U. H= H.( )U +

2
H,           (8) 

where 
  
U, T , H, , g, v ,  and  denote the velocity, 

temperature, magnetic field, density, acceleration due to 

gravity, kinematic viscosity, thermal diffusivity and 

electrical resistivity, respectively. Magnetic pressure can be 

written as 
 
=p + μ |H |2 /8 where p  is the fluid pressure 

and μ  is the magnetic permeability. When motion occurs, 

the upper free surface of the layer will be deformable with its 

position at z = d + f x, y, t( ) . At the free surface, we have the 

usual kinematic condition together with the conditions of 

continuity for the normal and tangential stresses. The 

temperature obeys the Newton's law of cooling, 

k T / n = h T T( ) , where k and h are the thermal 

conductivity of the fluid and the heat transfer coefficient 

between the free surface and the air, respectively, and n is 

the outward unit normal to the free surface. The boundary 

conditions at the bottom wall, z = 0, are no-slip and 

conducting to the temperature perturbations. 

 To simplify the analysis, it is convenient to write the 

governing equations and the boundary conditions in a 

dimensionless form. In the dimensionless formulation, scales 

for length, velocity, time, magnetic field and temperature 

gradient are taken to be d, / d, d 2 / , H 0 and T  

respectively. Furthermore, five dimensionless groups 

appearing in the problem are the Rayleigh number 

R = g Td 3 ,  Marangoni number M = Td / 0 v,  

Prandtl number Pr = / ,  magnetic Prandtl number 

Pm =  and the Chandrasekhar number 

Q = μH 2d 2 4 0 .  We study the linear stability of the 

basic state by seeking perturbed solutions for any quantity 

x, y, z, t( )  in terms of normal modes in the form 

x, y, z, t( ) = 0 x, y, z( ) + z( )exp i( x x + yy) + st ,    (9) 

where 0 is the value of in the basic state, 

a = ( x
2
+ y

2 )1/2 is the total horizontal wave number of the 

disturbance and s is a complex growth rate with a real part 

representing the growth rate of the instability and the 

imaginary part representing its frequency. At marginal  
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stability, the growth rate s of perturbation is zero and the real 

part of s, (s) > 0  represents unstable modes while 

(s) < 0  represents stable modes. Substituting equation (9) 

into equations (4) - (8) and neglecting terms of the second 

and higher orders in the perturbations we obtain the 

corresponding linearized equations involving only the z-

dependent parts of the perturbations to the temperature and 

the z-components of the velocity denoted by T and w 

respectively, 

(D2 a2 )2 QD2 w a2RT = 0,         (10) 

D2 a2( )T + f (z)w = 0,           (11) 

subjected to 

w = 0,             (12) 

DT = 0,            (13) 

D 2w + aM 1/2T = 0,           (14) 

at the upper free surface z = 1, and 

w = 0,             (15) 

D2w = 0,            (16) 

T = 0.             (17) 

on the lower rigid boundary z = 0. The operator D = d/dz 

denotes the differentiation with respect to the vertical 

coordinate z. The variables w and T denote respectively the 

vertical variation of the z-velocity, and temperature. To 

investigate the effect of the non-uniform temperature 

gradient on the Bénard-Marangoni convection, six types of 

basic temperature profile are chosen and these have been 

listed in Table 1 as model 1 to 6. 

3. SOLUTION 

 We use the single-term Rayleigh-Rits technique to find the 

critical eigenvalue. Multiplying equation (10) by w and equation 

(11) by T, integrating the resulting equations by parts with 

respect to z from 0 to 1, using the boundary conditions (12) - 

(17) and taking w = Aw1,T = BT1  in which A and B are 

constants and w1 and T1  are trial functions, yields the 

following equation for the eigenvalue: 

M =

D2w1( )
2
+ (2a2+Q ) Dw1( )

2
+a4w1

2 a2R w1T1 f z( )w1T1

DT1( )
2
+a2T1

2
DT1( )

2
+a2T1

2

a2Dw1 1( )T 1( ) f z( )w1T1
  (18) 

 In equation (18), ..  denotes integration with respect to z 

between z = 0  and z = 1 . We select the following trial 

functions 

w1 = z
2 1 z( ) 3 2z( ) , T1 = 1           (19) 

such that they satisfy all the boundary conditions (12) – (17) 

except the one given by equation (14), D2
w + a

2
MT = 0  but the 

residual from this is included in the residual from the 

differential equations. Substituting equations (19) into (18), 

we get 

M =
a2 4536+19a4 + 432a2 +16Q( ) 630a2 R 3z2 5z3 +2z4 f z( ) 3z2 5z3 +2z4( )

630a2 f z( ) 3z2 5z3 +2z4
 (20) 

4. RESULTS AND DISCUSSION 

 In this paper, we study the onset of steady instability of 

the Bénard-Marangoni convection arising due to the 

buoyancy and surface tension forces in the presence of 

magnetic field with non-uniform basic temperature gradient. 

Our study here is to show that a suitable nonlinear 

temperature profile, magnetic field and buoyancy forces 

suppress or augment Marangoni convection which is 

important in the material processing in the laboratory. In 

each case investigated in this paper, we can identify the 

critical minima of the marginal stability curves in the (a, M) 

plane. For a given set of parameters, the critical Marangoni 

number for the onset of convection is defined as the 

minimum of the global minima of marginal stability curve. 

We denote this critical value by Mc and the corresponding 

critical wave number by ac. 

 Table 2 shows the work of Nield [6] for the insulating 

case, Q = 0 and M = 0. As seen in Table 2, the agreement 

between the present results and the results from the literature 

(Nield [6]) is satisfactory for Q = 0 and M = 0. The critical 

Marangoni number Mc and the corresponding wave number 

ac for different value of Q and R is presented in Table 3. We 

recover the results of Pearson [2] for Q = 0 in the linear basic 

temperature case f (z) = 1 with R = 0. A comparison of the 

Table 1. Reference Steady-State Temperature Gradient 

 

Model Reference Steady-State Temperature Gradient f(z) 

1 Linear 1 

2 Inverted parabola 2(1-z)  

3 Parabola 2z 

4 Step function (z ),  where  is the Dirac delta-function.  

5 Piecewise linear (heated from below)  1 for 0 z < ,

0 for < z 1,
 where  is a time dependent thermal depth parameter.  

6 Piecewise linear (cooled from above)  0 for 0 z < 1 ,
1 for 1 < z 1.
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critical Marangoni number in Table 3 shows that the step 

function (Model 4) is the most destabilizing basic 

temperature distribution, because the jump in temperature 

occurs nearer the free surface, and the inverted parabolic 

(Model 2) is the most stabilizing temperature distribution. 

From Table 3, it is observed that for the critical Marangoni 

number, the inequality holds for the six models 

Mc4 < Mc6 < Mc3 < Mc5 < Mc1 < Mc2  

 It can be seen from Table 3, the critical Marangoni number 

increases with increasing Chandrasekhar number Q. This is 

expected since the presence of the uniform magnetic field 

suppresses the Marangoni convection. Physically, the magnetic 

field gives rise to the Lorentz force. This force is in a direction 

opposite to the direction of velocity and hence makes the system 

more stable. Significant suppression of the convective flow can 

be obtained by applying strong magnetic field. Table 3 also 

shows that the value of the critical wave number for every 

temperature profiles remain the same for various values of the 

Chandrasekhar number. The presence of the magnetic field has 

no effect on the value of the critical wave number. Further 

inspection in Table 3 shows that the critical Marangoni number 

decreases with an increase of the Rayleigh number, for the 

assigned value of the Chandrasekhar number.. The 

corresponding effect of the increasing magnetic field on the 

Marangoni convection may be viewed in Fig. (1) for R = 0. The 

figure indicates that the critical Marangoni number is a 

monotonic increasing function of Chandrasekhar number Q. It 

is expected that the imposition of the external magnetic field 

may play an important role in suppressing convective flow. 

 In the case of piecewise linear and step function profiles, the 

critical Marangoni number depends on the thermal depth . But, 

we found that the presence of magnetic field does not give the 

effect for critical thermal depth c for each of these 3 types of 

temperature gradient. Fig. (2) illustrates the critical Marangoni 

number Mc as a function of thermal depth  for step function and 

piecewise linear profiles with selected values of R and Q. This 

figure shows that for piecewise linear profile arising from 

heated from below, the critical Marangoni numbers decrease 

monotonically with an increase in the thermal depth. However, 

for step function and piecewise linear profile arising from 

cooled from above, the critical Marangoni numbers do not 

decrease monotonically with thermal depth. The critical 

Marangoni numbers first decrease, reach some minimum 

values, and then increase with increasing . From this figure, we 

note that when the magnetic field is imposed, the critical 

Marangoni number increases. 

Table 2. Critical Rayleigh Number Rc for Q = 0 and M = 0 

 

Rc Nield [6] Present Study 

Rc4 184.6 184.6 

Rc6 252.0 252.0 

Rc3 - 288.0 

Rc5 292.5 292.6 

Rc1 320.0 320.0 

Rc2 - 360.0 

 

Fig. (1). Critical Marangoni number as a function of Chandrasekhar 

number for R = 0. 

 

Fig. (2). Critical Marangoni number as a function of thermal depth 
for various values of Q and R. 

5. CONCLUSIONS 

 We have considered the influences of non-uniform basic 

temperature gradients and magnetic field on the onset of 

Bénard-Marangoni convection in a fluid layer with non-slip 

and insulated at the bottom. The single Galerkin procedure 

provides a good method for establishing this problem. We 

found that the step function is the most destabilizing basic 

temperature distribution, because the jump in temperature 

occurs nearer to the free surface. The critical Marangoni 
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number increases with increasing Chandrasekhar number. 

One can conclude that the convective enhancement induced 

by buoyancy and surface tension forces can be suppressed 

when the external magnetic field is applied. The magnetic 

field and inverted parabolic temperature profile increase Mc 

considerably. Hence, they make the system more stable than 

other cases. Therefore, we conclude that a suitable strength 

of magnetic field and inverted parabolic temperature profile 

is favourable for material processing in the laboratory with 

stimulated microgravity environment. 
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